We develop a general approach to factor analysis that involves observed and latent variables that are assumed to be distributed in the exponential family. This gives rise to a number of factor models not considered previously and enables the study of latent variables in an integrated methodological framework, rather than as a collection of seemingly unrelated special cases. The framework accommodates a great variety of different measurement scales and accommodates cases where different latent variables have different distributions. The models are estimated with the method of simulated likelihood, which allows for higher dimensional factor solutions to be estimated than heretofore. The models are illustrated on synthetic data. We investigate their performance when the distribution of the latent variables is mis-specified and when part of the observations are missing. We study the properties of the simulation estimators relative to maximum likelihood estimation with numerical integration. We provide an empirical application to the analysis of attitudes.