We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the problem of finding the Hausdorff dimension of the set of points that recur to shrinking targets on a self-affine fractal. To be exact, we study the dimension of a certain related symbolic recurrence set. In many cases, this set is equivalent to the recurring set on the fractal.
In a general setting of an ergodic dynamical system, we give a more accurate calculation of the speed of the recurrence of a point to itself (or to a fixed point). Precisely, we show that for a certain $\unicode[STIX]{x1D709}$ depending on the dimension of the space, $\liminf _{n\rightarrow +\infty }(n\log \log n)^{\unicode[STIX]{x1D709}}d(T^{n}x,x)=0$ almost everywhere and $\liminf _{n\rightarrow +\infty }(n\log \log n)^{\unicode[STIX]{x1D709}}d(T^{n}x,y)=0$ for almost all $x$ and $y$. This is done by assuming the exponential decay of correlations and making a weak assumption on the invariant measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.