We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We begin with an anecdote about the largest team in scientific history, and then discuss the shift toward larger teams more generally. We show that the team size distribution has changed its fundamental shape since the 1950s, shifting from a Poussion distribution to a power law distribution as teams have grown larger. These two mathematical shapes represent different modes in which teams form. An exponential distribution leads to the creation of small “core” teams. A power-law distribution results in “extended” teams, accumulating new members in proportion to the productivity of their existing members. These two modes allow us to create an accurate model of team formation, providing us with insight about how team size affects its survival, longevity, and creation of knowledge. We can then assess some of the benefits and drawbacks of large teams, and explore the different kinds of science large and small teams produce. We show how to quantify the disruption of an idea by creating a disruption index, and explain how levels of disruption reflect team size. We end by discussing the implications of the shift to larger teams in science, making a case for preserving smaller teams.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.