The purpose of this paper is to derive anisotropic mean curvature flow as the limit of the anisotropic Allen–Cahn equation. We rely on distributional solution concepts for both the diffuse and sharp interface models and prove convergence using relative entropy methods, which have recently proven to be a powerful tool in interface evolution problems. With the same relative entropy, we prove a weak–strong uniqueness result, which relies on the construction of gradient flow calibrations for our anisotropic energy functionals.