Let 𝒯n(F) denote the monoid of all upper triangular n×n matrices over a finite field F. It has been shown by Volkov and Goldberg that 𝒯n(F) is nonfinitely based if ∣F∣>2 and n≥4, but the cases when ∣F∣>2 and n=2,3 or when ∣F∣=2 have remained open. In this paper, it is shown that the monoid 𝒯2 (F) is finitely based when ∣F∣=2 , and a finite identity basis for it is given. Moreover, all maximal subvarieties of the variety generated by 𝒯2 (F) with ∣F∣=2 are determined.