We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive upper and lower bounds for the Assouad and lower dimensions of self-affine measures in $\mathbb {R}^d$ generated by diagonal matrices and satisfying suitable separation conditions. The upper and lower bounds always coincide for $d=2,3$, yielding precise explicit formulae for those dimensions. Moreover, there are easy-to-check conditions guaranteeing that the bounds coincide for $d \geqslant 4$. An interesting consequence of our results is that there can be a ‘dimension gap’ for such self-affine constructions, even in the plane. That is, we show that for some self-affine carpets of ‘Barański type’ the Assouad dimension of all associated self-affine measures strictly exceeds the Assouad dimension of the carpet by some fixed $\delta>0$ depending only on the carpet. We also provide examples of self-affine carpets of ‘Barański type’ where there is no dimension gap and in fact the Assouad dimension of the carpet is equal to the Assouad dimension of a carefully chosen self-affine measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.