Although the advent of microwave technologies has both improved and accelerated tissue processing for microscopy, there still remain many limitations in conventional chemical fixation, dehydration, embedding, and sectioning, particularly with regard to plant materials. The Proteaceae, a family of plants widely distributed in the Southern Hemisphere and well adapted to harsh climates and nutrient-poor soils, is a perfect example; the complexity of Proteaceae leaves means that almost no ultrastructural data are available as these are notoriously difficult to both infiltrate and section. Here, a step-by-step protocol is described that allows for the successful preparation of Banksia prionotes (Australian Proteaceae) leaves for both light and transmission electron microscopy. The method, which applies a novel combination of vibratome sectioning, microwave processing and vacuum steps, and the utilization of an ultra low viscosity resin, results in highly reproducible, well-preserved, sectionable material from which very high-quality light and electron micrographs can be obtained. With this, cellular ultrastructure from the level of a leaf through to organelle substructure can be studied. This approach will be widely applicable, both within and outside of the plant sciences, and can be readily adapted to meet specific sample requirements and imaging needs.