Toxocara canis infective larvae are known to produce abundant glycosylated molecules which may be found associated with the surface or secreted into their environment. Using a range of fluorescein-conjugated and gold-conjugated lectins, the localization of particular carbohydrates was defined on the surface of live parasites, and internally at the ultrastructural level. Surface exposure of N-acetyl galactosamine and N-acetyl glucosamine was deduced by binding of FITC-conjugated Helix pomatia (HPA) and wheat-germ agglutinins (WGA). These sugars appear to be associated with a densely staining surface coat as conventional immuno-electron microscopy procedures dissipate this coat and reveal no surface binding site for these lectins. However, by using cryo-immuno-electron microscopical (C-IEM) techniques, the surface coat is retained and can be shown to bind WGA. The fluorescent lectins also revealed strong WGA binding to the secretory and amphidial pores, while the buccal opening and the cuticular alae bound HPA. Corresponding results were obtained at the ultrastructural level. Thus, HPA bound to the electron-dense area of the cuticle, areas of local cuticular thickening such as the alae and buccal labia, as well as to the oesophageal lumen. WGA also bound to the thickened cuticle of the alae and the buccal opening, but showed no reaction to either the electron-dense layer of the cuticle or the oesophageal lumen. Unlike HPA, WGA did bind specifically to the secretory column contents and the electron-dense regions of the lips associated with the chemosensory amphids. The compartmentalization of the sugars N-acetyl galactosamine and N-acetyl glucosamine, their sources and routes of surface expression and the possible association with the TES glycoprotein antigens are discussed.