We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we look at the moments of a random variable. Specifically we demonstrate that moments capture useful information about the tail of a random variable while often being simpler to compute or at least bound. Several well-known inequalities quantify this intuition. Although they are straightforward to derive, such inequalities are surprisingly powerful. Through a range of applications, we illustrate the utility of controlling the tail of a random variable, typically by allowing one to dismiss certain “bad events” as rare. We begin by recalling the classical Markov and Chebyshev’s inequalities. Then we discuss three of the most fundamental tools in discrete probability and probabilistic combinatorics. First, we derive the complementary first and second moment methods, and give several standard applications, especially to threshold phenomena in random graphs and percolation. Then we develop the Chernoff–Cramer method, which relies on the “exponential moment” and is the building block for large deviations bounds. Two key applications in data science are briefly introduced: sparse recovery and empirical risk minimization.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.