We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Not all scientific publications are equally useful to policy-makers tasked with mitigating the spread and impact of diseases, especially at the start of novel epidemics and pandemics. The urgent need for actionable, evidence-based information is paramount, but the nature of preprint and peer-reviewed articles published during these times is often at odds with such goals. For example, a lack of novel results and a focus on opinions rather than evidence were common in coronavirus disease (COVID-19) publications at the start of the pandemic in 2019. In this work, we seek to automatically judge the utility of these scientific articles, from a public health policy making persepctive, using only their titles.
Methods:
Deep learning natural language processing (NLP) models were trained on scientific COVID-19 publication titles from the CORD-19 dataset and evaluated against expert-curated COVID-19 evidence to measure their real-world feasibility at screening these scientific publications in an automated manner.
Results:
This work demonstrates that it is possible to judge the utility of COVID-19 scientific articles, from a public health policy-making perspective, based on their title alone, using deep natural language processing (NLP) models.
Conclusions:
NLP models can be successfully trained on scienticic articles and used by public health experts to triage and filter the hundreds of new daily publications on novel diseases such as COVID-19 at the start of pandemics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.