Consider the random graph model of Barabási and Albert, where we add a new vertex in every step and connect it to some old vertices with probabilities proportional to their degrees. If we connect it to only one of the old vertices then this will be a tree. These graphs have been shown to have a power-law degree distribution, the same as that observed in some large real-world networks. We are interested in the width of the tree and we show that it is at the nth step; this also holds for a slight generalization of the model with another constant. We then see how this theoretical result can be applied to directory trees.