The paper considers one of the standard processes for modeling returns in finance, the stochastic volatility process with regularly varying innovations. The aim of the paper is to show how point process techniques can be used to derive the asymptotic behavior of the sample autocorrelation function of this process with heavy-tailed marginal distributions. Unlike other non-linear models used in finance, such as GARCH and bilinear models, sample autocorrelations of a stochastic volatility process have attractive asymptotic properties. Specifically, in the infinite variance case, the sample autocorrelation function converges to zero in probability at a rate that is faster the heavier the tails of the marginal distribution. This behavior is analogous to the asymptotic behavior of the sample autocorrelations of independent identically distributed random variables.