A preliminary evaluation of gaseous radiocarbon (14C) behavior under geological repository conditions for Italian radioactive high level waste-long-lived and intermediate level waste disposal has been performed. Although in Italy there is still no defined project for a geological disposal facility, current work may support future safety assessment studies for a hypothetical future repository in deep salt rock. In the Italian context of radioactive waste, the percentage of 14C bearing waste to be disposed in a possible geological repository is low; irradiated graphite is the most important radiological source. Data about the radiological inventory has been collected to simulate production and migration of gaseous 14C in a hypothetical geological repository. Three different conceptual models have been developed and simulated. The first model has considered a preliminary evaluation of the radiological impact referred to the whole inventory; the second and third model have evaluated the impact only due to the irradiated graphite. A preliminary sensitivity analysis has been carried out, highlighting the importance of geometry and of distribution coefficients (Kd) in materials used to seal the disposal underground facility. Results show the possibility to correlate the Kd values, the volume and the location of the sealing materials to the amount of 14C migrating toward the surface.