We study controllability for a nonhomogeneous string and ring under an axial stretchingtension that varies with time. We consider the boundary control for a string anddistributed control for a ring. For a string, we are looking for a controlf(t) ∈ L 2(0,T) that drives the state solution to rest. We show that for a ring, two forcesare required to achieve controllability. The controllability problem is reduced to amoment problem for the control. We describe the set of initial data which may be driven torest by the control. The proof is based on an auxiliary basis property result.