Recent advances in data recording technology have given researchers new ways of collecting on-line and continuous data for analyzing input-output systems. For example, continuous response digital interfaces are increasingly used in psychophysics. The statistical problem related to these input-output systems reduces to linking time-varying covariates to a continuous response variate. Using real-time data obtained from an experiment in psychoacoustics, we showcase new statistical tools that incorporate dynamical elements of an input-output system. We employ functional data analysis (FDA) methods and a simple differential equation to analyze and model the continuous responses. Furthermore, we outline the issues involved in analyzing input-output systems when the exact form of the underlying mathematical model is not known. Finally, we develop a calibration method to facilitate inter-subject and intra-subject comparisons.