We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Percutaneous coronary intervention (PCI) appears to be superior to in-hospital fibrinolysis for most patients with ST-elevation myocardial infarction (STEMI). However, few hospitals have PCI capability. The optimal prehospital strategy for facilitating rapid coronary reperfusion in STEMI patients is unclear. We sought to determine whether direct transport of adult STEMI patients by emergency medical services to primary PCI centres improves 30-day all-cause mortality when compared with a strategy of transportation to the closest hospital.
Methods:
We systematically searched MEDLINE, EMBASE, Cochrane “CENTRAL” database (1980-July 2007) and several other electronic databases. Two authors independently assessed citations for relevance. Two authors independently abstracted data from included studies. We included studies that, 1) transported patients directly to a PCI-capable centre for primary PCI, 2) had a control group that was transported to the closest hospital and 3) reported outcomes of treatment time intervals, all-cause mortality, reinfarction rate, stroke rate or the frequency of cardiogenic shock. We used a random effects model to provide pooled estimates of relative risk (RR) when data allowed.
Results:
We identified 2264 citations with the search. Five studies, including 980 STEMI patients, met inclusion criteria, and were clinically heterogeneous and of variable quality. Most studies were European (3/5) and involved physician out-of-hospital care providers. There was a trend toward increased survival with direct transport to primary PCI but this was not statistically significant (RR 0.51, 95% confidence interval [CI] 0.24–1.10). One study reported nonsignificant reductions in reinfarction (RR 0.43, 95% CI 0.11–1.60) and stroke (RR 0.33, 95% CI 0.01–8.06) with direct transport for primary PCI.
Conclusion:
There is insufficient evidence to support the effectiveness of direct transport of patients with STEMI for primary PCI when compared with transportation to the closest hospital.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.