We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Excessive worry is a defining feature of generalized anxiety disorder and is present in a wide range of other psychiatric conditions. Therefore, individualized predictions of worry propensity could be highly relevant in clinical practice, with respect to the assessment of worry symptom severity at the individual level.
Methods
We applied a multivariate machine learning approach to predict dispositional worry based on microstructural integrity of white matter (WM) tracts.
Results
We demonstrated that the machine learning model was able to decode individual dispositional worry scores from microstructural properties in widely distributed WM tracts (mean absolute error = 10.46, p < 0.001; root mean squared error = 12.82, p < 0.001; prediction R2 = 0.17, p < 0.001). WM tracts that contributed to worry prediction included the posterior limb of internal capsule, anterior corona radiate, and cerebral peduncle, as well as the corticolimbic pathways (e.g. uncinate fasciculus, cingulum, and fornix) already known to be critical for emotion processing and regulation.
Conclusions
The current work thus elucidates potential neuromarkers for clinical assessment of worry symptoms across a wide range of psychiatric disorders. In addition, the identification of widely distributed pathways underlying worry propensity serves to better improve the understanding of the neurobiological mechanisms associated with worry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.