We study a random record model where the observation Xi has continuous distribution function Fαi (αi > 0) and the number of available observations is random and independent of the observations. We obtain the joint distribution of the record values and inter-record times for our model. We investigate the distribution of the number of records when the number of observations has one of the common distributions and the α's increase geometrically or linearly. A particularly interesting case arises when the observations arrive at time points paced by a Poisson point process. For this model we obtain distributional results for the inter-arrival times of records for a large class of combinations of α structures and intensity functions.