In this article, we generalize Haglund and Wise’s theory of special cube complexes to groups acting on quasi-median graphs. More precisely, we define special actions on quasi-median graphs, and we show that a group which acts specially on a quasi-median graph with finitely many orbits of vertices must embed as a virtual retract into a graph product of finite extensions of clique-stabilizers. In the second part of the article, we apply the theory to fundamental groups of some graphs of groups called right-angled graphs of groups.