Research on estimation of a psychometric function Ψ has usually focused on comparing alternative algorithms to apply to the data, rarely addressing how best to gather the data themselves (i.e., what sampling plan best deploys the affordable number of trials). Simulation methods were used here to assess the performance of several sampling plans in yes–no and forced-choice tasks, including the QUEST method and several variants of up–down staircases and of the method of constant stimuli (MOCS). We also assessed the efficacy of four parameter estimation methods. Performance comparisons were based on analyses of usability (i.e., the percentage of times that a plan yields usable data for the estimation of all the parameters of Ψ) and of the resultant distributions of parameter estimates. Maximum likelihood turned out to be the best parameter estimation method. As for sampling plans, QUEST never exceeded 80% usability even when 1000 trials were administered and rendered accurate estimates of threshold but misestimated the remaining parameters. MOCS and up–down staircases yielded similar and acceptable usability (above 95% with 400–500 trials) and, although neither type of plan allowed estimating all parameters with optimal precision, each type appeared well suited to estimating a distinct subset of parameters. An analysis of the causes of this differential suitability allowed designing alternative sampling plans (all based on up–down staircases) for yes–no and forced-choice tasks. These alternative plans rendered near optimal distributions of estimates for all parameters. The results just described apply when the fitted Ψ has the same mathematical form as the actual Ψ generating the data; in case of form mismatch, all parameters except threshold were generally misestimated but the relative performance of all the sampling plans remained identical. Detailed practical recommendations are given.