We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Functional impairment is a major concern among those presenting to youth mental health services and can have a profound impact on long-term outcomes. Early recognition and prevention for those at risk of functional impairment is essential to guide effective youth mental health care. Yet, identifying those at risk is challenging and impacts the appropriate allocation of indicated prevention and early intervention strategies.
Methods
We developed a prognostic model to predict a young person’s social and occupational functional impairment trajectory over 3 months. The sample included 718 young people (12–25 years) engaged in youth mental health care. A Bayesian random effects model was designed using demographic and clinical factors and model performance was evaluated on held-out test data via 5-fold cross-validation.
Results
Eight factors were identified as the optimal set for prediction: employment, education, or training status; self-harm; psychotic-like experiences; physical health comorbidity; childhood-onset syndrome; illness type; clinical stage; and circadian disturbances. The model had an acceptable area under the curve (AUC) of 0.70 (95% CI, 0.56–0.81) overall, indicating its utility for predicting functional impairment over 3 months. For those with good baseline functioning, it showed excellent performance (AUC = 0.80, 0.67–0.79) for identifying individuals at risk of deterioration.
Conclusions
We developed and validated a prognostic model for youth mental health services to predict functional impairment trajectories over a 3-month period. This model serves as a foundation for further tool development and demonstrates its potential to guide indicated prevention and early intervention for enhancing functional outcomes or preventing functional decline.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.