We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Automatic external defibrillators (AED) have enabled the medical act of defibrillation to be performed in the community by a number of non-physician providers. However, these portable, battery-powered units are costly to maintain and service. This study examines the life of AED batteries and provides a battery replacement protocol.
Design:
Prospective diagnostic testing of 191 field batteries to determine their ability to deliver shocks at 360 joule.
Setting:
Ottawa General Hospital Paramedic Program.
Outcomes:
Using a battery analyzer, battery capacity and the number of shocks delivered were determined for each battery (at room temperature and in a controlled, refrigerated setting). In addition, the reliability of the testing method was assessed using the interclass correlation coefficient (ICC).
Results:
High reliability of blinded technical assessment of the batteries was achieved (ICC = 0.85). A strong correlation between the battery's capacity and the number of shocks it can deliver was obtained. For example, a battery with a measured capacity of 75% is capable of delivering more than 30 consecutive 360 joule shocks. This compares to a battery with a capacity of 20%, which is capable of delivering only 12 consecutive 360 joule shocks.
Conclusion:
While manufacturers' recommendations on battery replacement always have been based on an assumed technical threshold, these recommendations are not based on individual battery performance. The system for testing batteries described in this paper, should provide significant cost savings and improve quality assurance within a prehospital AED program.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.