We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove the following theorem. Let $f$ be a dominant polynomial endomorphism of the affine plane defined over an algebraically closed field of characteristic $0$. If there is no nonconstant invariant rational function under $f$, then there exists a closed point in the plane whose orbit under $f$ is Zariski dense. This result gives us a positive answer to a conjecture proposed by Medvedev and Scanlon, by Amerik, Bogomolov and Rovinsky, and by Zhang for polynomial endomorphisms of the affine plane.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.