Three types of multilayer flyer energy conversion elements (MFECEs) through integrating different laser pulse absorption/ablation layer of nano-film materials into a laser-driven flyer plates between thermal barrier of alumina and transparent substrate have been investigated in this study. The relationships among the velocity of flyer plates, initiation performance of hexanitrostilbene (HNS-IV), and initiation energy were analyzed, comparing with single-layer Al flyer plate. The photonics Doppler velocimetry and James criterion were utilized in the experiments to characterize the velocity of flyer plates and shock initiation of laser-driven flyer detonator, respectively. The surface reflectivity measurements of the Al, C/Al and Mg/Al layers were performed using laser reflectivity. HNS-IV without initiation was analyzed by scanning electron microscope and energy dispersive spectrometer. Caused by aluminum/alumina/aluminum (Al/Al2O3/Al) flyer plate, the residual fragments were found in the pit on the surface of charge. The results obtained were shows that three types of multilayer flyer plates can initiate HNS-IV successfully under the lower laser pulse energy, although all four kinds of flyer plates have successfully initiated HNS-IV with laser pulse energy in the range of 53.80–166.80 mJ. Changing the ablation layer structure and adding thermal insulation layer to the multilayer flyer plates, reduces the shock initiation laser pulse energy of HNS-IV to 53.80 mJ. The laser-driven flyer detonator has significant advantages in providing safety and reliability, especially in a strong electromagnetic environment. The MFECEs of laser-driven flyer detonator exhibited a high level of integration and proved to have promoted laser-driven energy coupling rate, which can significantly be used to improve the performance of the laser-driven flyer detonator in military and civilian applications.