In most cases, a herbicide must traverse the cell wall, the plasma membrane, and organellar membranes of a plant cell to reach its site of action where accumulation causes phytotoxicity. The physicochemical characteristics of the herbicide molecule including lipophilicity and acidity, the plant cell membranes, and the electrochemical potential in the plant cell control herbicide absorption and accumulation. Most herbicides move across plant membranes via nonfacilitated diffusion because the membrane's lipid bilayer is permeable to neutral, lipophilic xenobiotics. Passive absorption of lipophilic, ionic herbicides or weak acids can be mediated by an ion-trapping mechanism where the less lipophilic, anionic form accumulates in alkaline compartments of the plant cell. A model that includes the pH and electrical gradients across plant cell membranes better predicts accumulation concentrations in plant cells of weak acid herbicides compared to a model that uses pH only. Herbicides also may accumulate in plant cells by conversion to nonphytotoxic metabolites, binding to cellular constituents, or partitioning into lipids. Evidence exists for herbicide transport across cell membranes via carrier-mediated processes where herbicide accumulation is energy dependent; absorption is saturable and slowed by metabolic inhibitors and compounds of similar structure.