We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Emergency pediatric life support (EPLS) of children infected with transmissible respiratory diseases requires adequate respiratory protection for medical first responders. Conventional air-purifying respirators (APR) and modern loose-fitting powered air-purifying respirator-hoods (PAPR-hood) may have a different impact during pediatric resuscitation and therefore require evaluation.
Objective
This study investigated the influence of APRs and PAPR-hoods during simulated pediatric cardiopulmonary resuscitation.
Methods
Study design was a randomized, controlled, crossover study. Sixteen paramedics carried out a standardized EPLS scenario inside an ambulance, either unprotected (control) or wearing a conventional APR or a PAPR-hood. Treatment times and wearer comfort were determined and compared.
Results
All paramedics completed the treatment objectives of the study arms without adverse events. Study subjects reported that communication, dexterity and mobility were significantly better in the APR group, whereas the heat-build-up was significantly less in the PAPR-hood group. Treatment times compared to the control group did not significantly differ for the APR group but did with the PAPR-hood group (261±12 seconds for the controls, 275±9 seconds for the conventional APR and 286±13 seconds for the PAPR-hood group, P < .05.
Conclusions
APRs showed a trend to better treatment times compared to PAPR-hoods during simulated pediatric cardiopulmonary resuscitation. Study participants rated mobility, ease of communication and dexterity with the tight-fitting APR system significantly better compared to the loose-fitting PAPR-hood.
SchumacherJ, GraySA, MichelS, AlcockR, BrinkerA. Respiratory Protection During Simulated Emergency Pediatric Life Support: A Randomized, Controlled, Crossover Study. Prehosp Disaster Med. 2013;28(1):1-6.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.