In this article, using an Halpern extragradient method, we study a new iterative scheme for finding a common element of the set of solutions of multiple set split equality equilibrium problems consisting of pseudomonotone bifunctions and the set of fixed points for two finite families of Bregman quasi-nonexpansive mappings in the framework of p-uniformly convex Banach spaces, which are also uniformly smooth. For this purpose, we design an algorithm so that it does not depend on prior estimates of the Lipschitz-type constants for the pseudomonotone bifunctions. Furthermore, we present an application of our study for finding a common element of the set of solutions of multiple set split equality variational inequality problems and fixed point sets for two finite families of Bregman quasi-nonexpansive mappings. Finally, we conclude with two numerical experiments to support our proposed algorithm.