We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the completed Hecke algebra of $p$-adic modular forms is isomorphic to the completed Hecke algebra of continuous $p$-adic automorphic forms for the units of the quaternion algebra ramified at $p$ and $\infty$. This gives an affirmative answer to a question posed by Serre in a 1987 letter to Tate. The proof is geometric, and lifts a mod $p$ argument due to Serre: we evaluate modular forms by identifying a quaternionic double-coset with a fiber of the Hodge–Tate period map, and extend functions off of the double-coset using fake Hasse invariants. In particular, this gives a new proof, independent of the classical Jacquet–Langlands correspondence, that Galois representations can be attached to classical and $p$-adic quaternionic eigenforms.
We present a new construction of the $p$-adic local Langlands correspondence for $\operatorname{GL}_{2}(\mathbb{Q}_{p})$ via the patching method of Taylor–Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the $p$-adic Langlands program; in particular, it gives a new proof of many cases of the second author’s local–global compatibility theorem and relaxes a hypothesis on the local mod $p$ representation in that theorem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.