To control hepatitis A spread by vaccination, accurate estimation of transmissibility is vital. Regan et al. (2016) proposed a model of hepatitis A virus (HAV) transmission and used least squares to calibrate model to the 1991/1992 HAV outbreak in men who have sex with men (MSM) in Sydney, Australia. Based on the estimate of R0, they obtained the critical immunity of 70% and showed that when the proportion immune <70%, there is a definite chance for outbreaks to take place. The immunity level from previous surveys ranges from 32% to 64% after 1996 while no outbreaks in Australian MSMs have been reported since 1996. Further noticing the ill-distributed parameters, we argue that their estimate of R0 is not accurate. In this study, we revisited their model by Bayesian inference, which has privilege over least squares. We obtained the appropriate posterior distributions of parameters and the estimate of R0 ranges from 1.38 to 2.89, indicating a critical immunity of 65%. The reduction in critical immunity and outbreak probabilities predicts the absence of outbreaks in Australian MSMs since 1996. Our study shows the importance of using appropriate methods to provide reliable and accurate estimates of the model parameters especially the transmissibility.