This article describes the design and evaluation of a new type of propulsion mechanism that uses modular umbrella-like wings oscillating symmetrically in counterphase to generate thrust. The principle of the propulsion and movement of the modular umbrella-like wings was first developed, and the mechanism used to implement the movement of the modular wings was subsequently designed. A structural model and the assembly relationship of the propulsion mechanism were developed for prototype fabrication. An experiment was established to measure the kinematic and mechanical performances of the propulsion mechanism for different reciprocating frequencies and travels. The results for the single umbrella-like wing indicate that either increasing the frequency or enlarging the travel can enhance the average aerodynamic force generated by the wing in one cycle. The results for the modular umbrella-like wings demonstrate that the inertial force generated by the mechanism can be balanced using a symmetrical structure. The average aerodynamic force would be markedly enhanced by increasing the percentage of the time that the outspread wing is moving downwards; e.g. the average aerodynamic force generated by the modular umbrella-like wings was increased by 85.84% compared to the value for a single umbrella-like wing for the same travel and frequency. This work provides practical guidance for optimising the structure design.