Numerical atomic orbitals have been successfully used in molecular simulations as a basis set, which provides a nature, physical description of the electronic states and is suitable for 𝒪(N) calculations based on the strictly localized property. This paper presents a numerical analysis for some simplified atomic orbitals, with polynomial-type and confined Hydrogen-like radial basis functions respectively. We give some a priori error estimates to understand why numerical atomic orbitals are computationally efficient in electronic structure calculations.