Variational principles are derived in order to facilitate the investigation of the vibrations and stability of single and double-walled carbon nanotubes conveying a fluid, from a linear time-dependent partial differential equation governing their displacements. The nonlocal elastic theory of Euler-Bernoulli beams takes small-scale effects into account. Hamilton’s principle is obtained for double-walled nano-tubes conveying a fluid. The natural and geometric boundary conditions identified are seen to be coupled and time-dependent due to nonlocal effects.