We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report on a new scheme for efficient continuous-wave (CW) mid-infrared generation using difference frequency generation (DFG) inside a periodically poled lithium niobate (PPLN)-based optical parametric oscillator (OPO). The pump sources were two CW fiber lasers fixed at 1018 nm and 1080 nm. One worked as the assisted laser to build parametric oscillation and generate an oscillating signal beam while the other worked at low power (${\leqslant}3~\text{W}$) to induce DFG between it and the signal beam. The PPLN temperature was appropriately adjusted to enable OPO and DFG to synchronously meet phase-matching conditions. Finally, both low-power 1018 nm and 1080 nm pump beams were successfully converted to $3.1~\unicode[STIX]{x03BC}\text{m}$ and $3.7~\unicode[STIX]{x03BC}\text{m}$ idler beams, respectively. The conversion efficiencies of the 1018 nm and 1080 nm pumped DFG reached 20% and 15%, respectively, while their slope efficiencies reached 19.6% and 15%. All these data were comparable to the OPOs pumped by themselves and never realized before in traditional CW DFG schemes. The results reveal that high-efficiency frequency down-conversion can be achieved with a low-power near-infrared pump source.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.