We study Banach-Mazur compacta Q(n), that is, the sets of all isometry classes of n-dimensional Banach spaces topologized by the Banach-Mazur metric. Our main result is that Q(2) is homeomorphic to the compactification of a Hilbert cube manifold by a point, for we prove that Qg(2) = Q(2) / {Eucl.} is a Hilbert cube manifold. As a corollary it follows that Q(2) is not homogeneous.