Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations.We focus on mortar finite element methods on non-matching triangulations.In particular, we discuss and analyze dual Lagrange multiplier spacesfor lowest order finite elements.These non standard Lagrange multiplier spaces yield optimal discretizationschemes and a locally supported basis for the associatedconstrained mortar spaces. As a consequence,standard efficient iterative solvers as multigrid methods or domain decomposition techniques can be easily adapted to the nonconformingsituation.Here, we introduce new dual Lagrange multiplier spaces. We concentrateon the construction of locally supported and continuous dualbasis functions.The optimality of the associated mortar method is shown. Numerical results illustrate the performance of our approach.