We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The origin of life could have involved autotrophy, but this is most probably chemolithotrophic rather than photolithotrophic. There is evidence, from the natural abundance of carbon isotopes, of autotrophy involving Rubisco and the Benson–Calvin–Bassham cycle from about 4 Ga. However, other autotrophic CO2 fixation pathways could also have occurred. Evidence on the evolution of photosynthetic reactions suggests an early origin of the photochemical reaction centre, with the possibility of the occurrence of two photosystems in series (photosystem II plus photosystem I) and the possibility of oxygenic photosynthesis, before the origin of the single photosystem (reaction centre I or reaction centre II) photosynthesis in the multiple clades of anoxygenic photosynthetic bacteria. The origin of photosystem II and photosystem I preceded the origin of cyanobacteria and the subsequent Great Oxidation Event at about 2.4–2.3 Ga. The occurrence of oxygenic photolithotrophy is a necessary, but not sufficient, condition for the occurrence of the Great Oxidation Event and the Neoproterozoic Oxidation Event. There is no consensus on what other factors are involved in initiating the Great Oxidation Event and the Neoproterozoic Oxidation Event.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.