At room temperature (RT), Fe2Mo3O12 is stable in monoclinic structure phase and above 780 K it transforms to an orthorhombic phase. Experiment shows that in the high temperature orthorhombic phase, the material exhibits low or negative thermal expansion property. In the paper, new compounds with the formula Fe2–x(ZrMg)0.5xMo3O12 (x = 0–1.8) are reported. The compounds are designed and synthesized to reduce the phase transition temperature of the Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+ in it. It is found that the monoclinic-to-orthorhombic phase transition temperature can be lowered effectively by the co-incorporation. The orthorhombic phase of Fe0.4(ZrMg)0.8Mo3O12 may be obtained at RT and it may keep the orthorhombic structure as low as 103 K. Meanwhile, the co-incorporation of Zr4+ and Mg2+ may tailor the coefficient of thermal expansion (CTE) of the Fe2Mo3O12 and the near-zero CTEs are obtained for the compound around x = 1.7 (Fe0.3(ZrMg)0.85Mo3O12). This work paves the way toward developing low-cost and near-zero thermal expansion materials over wide temperature ranges.