We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a classical chess round-robin tournament, each of $n$ players wins, draws, or loses a game against each of the other $n-1$ players. A win rewards a player with 1 points, a draw with 1/2 point, and a loss with 0 points. We are interested in the distribution of the scores associated with ranks of $n$ players after ${{n \choose 2}}$ games, that is, the distribution of the maximal score, second maximum, and so on. The exact distribution for a general $n$ seems impossible to obtain; we obtain a limit distribution.
Let X = (X1, …, Xn) be a random binary vector, with a known joint distribution P. It is necessary to inspect the coordinates sequentially in order to determine if Xi = 0 for every i, i = 1, …, n. We find bounds for the ratio of the expected number of coordinates inspected using optimal and greedy searching policies.
A new time series model for exponential variables having first-order autoregressive structure is presented. Unlike the recently studied standard autoregressive model in exponential variables (ear(1)), runs of constantly scaled values are avoidable, and the two parameter structure allows some adjustment of directional effects in sample path behaviour. The model is further developed by the use of cross-coupling and antithetic ideas to allow negative dependency. Joint distributions and autocorrelations are investigated. A transformed version of the model has a uniform marginal distribution and its correlation and regression structures are also obtained. Estimation aspects of the models are briefly considered.
A formula is derived for the supremum of a stationary Gaussian process which has a correlation function that is tent-like in shape, until it flattens out at a constant negative value. Examples and graphs are presented in the last section.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.