A system of interacting multi-class finite-state jump processes is analyzed. The model under consideration consists of a block-structured network with dynamically changing multi-color nodes. The interactions are local and described through local empirical measures. Two levels of heterogeneity are considered: between and within the blocks where the nodes are labeled into two types. The central nodes are those connected only to nodes from the same block, whereas the peripheral nodes are connected to both nodes from the same block and nodes from other blocks. Limits of such systems as the number of nodes tends to infinity are investigated. In particular, under specific regularity conditions, propagation of chaos and the law of large numbers are established in a multi-population setting. Moreover, it is shown that, as the number of nodes goes to infinity, the behavior of the system can be represented by the solution of a McKean–Vlasov system. Then, we prove large deviations principles for the vectors of empirical measures and the empirical processes, which extends the classical results of Dawson and Gärtner (Stochastics 20, 1987) and Léonard (Ann. Inst. H. Poincaré Prob. Statist. 31, 1995).