In long-time numerical integration of Hamiltonian systems,and especially in molecular dynamics simulation,it is important that the energy is well conserved. For symplecticintegrators applied with sufficiently small step size, thisis guaranteed by the existence of a modifiedHamiltonian that is exactly conserved up to exponentially smallterms. This article is concerned with the simplifiedTakahashi-Imada method, which is a modificationof the Störmer-Verlet method that is as easy to implement buthas improved accuracy. This integrator is symmetric andvolume-preserving, but no longer symplectic. We study itslong-time energy conservation and give theoreticalarguments, supported by numerical experiments, whichshow the possibility of a drift in the energy (linear or like a random walk).With respect to energy conservation, this article provides empiricaland theoretical data concerning the importance of using a symplecticintegrator.