A Bayesian approach to the testing of competing covariance structures is developed. The method provides approximate posterior probablities for each model under consideration without prior specification of individual parameter distributions. The method is based on ayesian updating using cross-validated pseudo-likelihoods. Given that the observed variables are the samefor all competing models, the approximate posterior probabilities may be obtained easily from the chi square values and other known constants, using only a hand calculator. The approach is illustrated using and example which illustrates how the prior probabilities can alter the results concerning which model specification is preferred.