For coherent systems with components and active redundancies having heterogeneous and dependent lifetimes, we prove that the lifetime of system with redundancy at component level is stochastically larger than that with redundancy at system level. In particular, in the setting of homogeneous components and redundancy lifetimes linked by an Archimedean survival copula, we develop sufficient conditions for the reversed hazard rate order, the hazard rate order and the likelihood ratio order between two system lifetimes, respectively. The present results substantially generalize some related results in the literature. Several numerical examples are presented to illustrate the findings as well.