Background: Community-acquired methicillin-resistant Staphylococcusaureus (CA-MRSA), a novel strain of MRSA, has recently emerged and rapidlyspread in the community. Invasion into the hospital setting with replacement of thehospital-acquired MRSA (HA-MRSA) has also been documented. Co-colonization with bothCA-MRSA and HA-MRSA would have important clinical implications given differences inantimicrobial susceptibility profiles and the potential for exchange of geneticinformation.
Methods: A deterministic mathematical model was developed to characterizethe transmission dynamics of HA-MRSA and CA-MRSA in the hospital setting and to quantifythe emergence of co-colonization with both strains
Results: The model analysis shows that the state of co-colonization becomesendemic over time and that typically there is no competitive exclusion of either strain.Increasing the length of stay or rate of hospital entry among patients colonized withCA-MRSA leads to a rapid increase in the co-colonized state. Compared to MRSAdecolonization strategy, improving hand hygiene compliance has the greatest impact ondecreasing the prevalence of HA-MRSA, CA-MRSA and the co-colonized state.
Conclusions: The model predicts that with the expanding community reservoirof CA-MRSA, the majority of hospitalized patients will become colonized with both CA-MRSAand HA-MRSA.