We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Plato’s dialoguesespecially the Republiclead us to wonder what the objects of mathematics are. For Plato, no perceptible three is unqualifiedly three, a necessary condition for being an object of knowledge. Aristotle controversially ascribes to Plato the view that mathematical objects are “intermediates,” between perceptibles and Forms: multiple but also eternal, lacking change, and separate from perceptibles. The hunt for or against intermediates in Plato’s dialogues has depended on two ways of understanding Plato on scientific claims, a Form-centric approach and a subject-centric (semantic) approach. Although Socrates does not present intermediates in the Republic, it is difficult to see how the units of the expert arithmetician or motions of the real astronomer could be simply Forms or perceptibles. The standard over-reading of the Divided Line, where the middle sections are equal, further obscures our understanding. The Phaedo and the Timaeus provide candidates for mathematical objects, although these have only some of the attributes ascribed to intermediates. We are left with no clear answer, but exploring options may be exactly what Plato wants.
This chapter addresses the questions such as what this dramatic transformation owed to the contemporary culture of the book, and what, if any, consequences it held for that culture. How demanding was revealed in their different ways by four enterprises that exploited the world of print to the full: natural history, medicine, magic and the mathematical sciences. The title ofthe work was decided by his first plan, Newton conceding to it in order to protect Halley's investment; but its very existence was conditional on the second. In Halley's London, authorship even of what is arguably the greatest work in the history of science was compromised by the very measures deemed necessary to protect and legitimate it. A different approach was that of the third institution to show success: the Royal Society. Realizing the futility of attempting isolation, the Society engaged closely with the London book trade. Its fortunes are discussed later in this chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.