Though three-dimensional (3D) imaging gives deep insight into the inner structure of complex materials, the stereological analysis of 2D snapshots of material sections is still necessary for large-scale industrial applications for reasons related to time and cost constraints. In this paper, we propose an original framework to estimate the orientation distribution of generalized cylindrical structures from a single 2D section. Contrary to existing approaches, knowledge of the cylinder cross-section shape is not necessary. The only requirement is to know the area distribution of the cross-sections. The approach relies on minimization of a least squares criterion under linear equality and inequality constraints that can be solved with standard optimization solvers. It is evaluated on synthetic data, including simulated images, and is applied to experimental microscopy images of fibrous composite structures. The results show the relevance and capabilities of the approach though some limitations have been identified regarding sensitivity to deviations from the assumed model.