Individuals may experience health issues attributable to environmental pollution, sedentary lifestyles, and unhealthy dietary habits. In response, numerous non-pharmaceutical treatments and techniques have emerged, with therapy mud being one such approach. The primary aim of this research was to analyze the chemical and mineralogical compositions of peloids obtained from six salt lakes: Taigan (LI), Duruu (LII), Khadaasan (LIII), Ikhes (LIV), Tonkhil (LV), and Khulmaa (LVI) in the Gobi-Altai province of Mongolia. Sample analyses involved X-ray diffraction for mineralogical assessment and inductively coupled plasma-mass spectrometry (Agilent Technologies 7800 series in Canada) for determining the chemical composition of the solid phase. Among essential macro- and microelements, Mg, Cа, Na, K, Sr, Ga, Mo, and Se had been leached from peloid to artificial sweat. Sn (0.01 μg g–1) at LIV and LVI lakes and Cu (0.01 μg g–1) at LV lake transferred from peloids to sweat, but no mobility of these elements in other peloids was detected. Li (0.02–0.04 μg g–1) was adsorbed from the sweat to potential peloids in LV, LIV, LIII, and LI lakes, while As (0.04–0.09 μg g–1) leached from peloids to sweat in all lakes except for LII. Zn (0.01 μg g–1) and Cr (0.04 μg g–1) transferred from the sweat to peloids in all lakes. Macroelements (Na, K, Ca, and Mg) and microelements (Mo, Se), which are essential for the human body, leached from the peloid to sweat. However, the mobility of toxic elements was minimal. Among micro-elements, the transition of Sr occurred the most, which can be explained by the Sr content in the peloid.