We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Building on the dataset presented in the previous chapter, this chapter explores using historical information (as represented by previous DBpedia versions) to perform feature engineering using historical features.Working with historical data makes all Feature Engineering complex but the whole concept of “truth,” the immutablity of the target class is challenged. Great feature for a particular class have to become acceptable features for a different class. Topics covered include imputing timestamped data, lagged features and moving window averaging of the data. Due to unavailability of population data for cities, a second dataset revolving around countries is introduced to perform population prediction using time series ARIMA models over 50 years of data, as provided by the world bank. The chapter exemplifies different methods to blend machine learning with time series models, including using their output as another feature or training a model to predict their errors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.