A p-divisible group over a complete local domain determines a Galois representation on the Tate module of its generic fibre. We determine the image of this representation for the universal deformation in mixed characteristic of a bi-infinitesimal group and for the p-rank strata of the universal deformation in positive characteristic of an infinitesimal group. The method is a reduction to the known case of one-dimensional groups by a deformation argument based on properties of the stratification by Newton polygons.