We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Salt marshes have been lost or degraded as the intensity of human impacts to coastal landscapes has increased due to agriculture, transportation, urban and industrial development, and climate change. Because salt marshes have limited distribution and embody a variety of ecological functions that are important to humans (see ecosystem services, Chapter 15), many societies have recognized the need to preserve remaining marshes, restore those that have been degraded, and create new marshes in areas where they have been lost. An emerging and critical threat to tidal marshes across the globe is increasing rates of sea level rise and other aspects of climate change, which complicates but also heightens the urgency for restoration. By restoration we mean re-establishing natural conditions and the processes needed to support their functions, especially self-maintenance (see Box 17.1). Typically, salt marshes are self-maintaining, with salt tolerant plants, mineral sediments, and tidal flooding interacting to maintain elevation and ecological functions under dynamic conditions (Chapters 4, 7, 8).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.