Three plausible assumptions of conditional independence in a hierarchical model for responses and response times on test items are identified. For each of the assumptions, a Lagrange multiplier test of the null hypothesis of conditional independence against a parametric alternative is derived. The tests have closed-form statistics that are easy to calculate from the standard estimates of the person parameters in the model. In addition, simple closed-form estimators of the parameters under the alternatives of conditional dependence are presented, which can be used to explore model modification. The tests were applied to a data set from a large-scale computerized exam and showed excellent power to detect even minor violations of conditional independence.